(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(g(x)) → g(g(f(x)))
f(g(x)) → g(g(g(x)))

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(g(x)) → g(g(f(x)))
f(g(x)) → g(g(g(x)))

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
f(g(x)) → g(g(f(x)))
f(g(x)) → g(g(g(x)))

Types:
f :: g → g
g :: g → g
hole_g1_0 :: g
gen_g2_0 :: Nat → g

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
f

(6) Obligation:

Innermost TRS:
Rules:
f(g(x)) → g(g(f(x)))
f(g(x)) → g(g(g(x)))

Types:
f :: g → g
g :: g → g
hole_g1_0 :: g
gen_g2_0 :: Nat → g

Generator Equations:
gen_g2_0(0) ⇔ hole_g1_0
gen_g2_0(+(x, 1)) ⇔ g(gen_g2_0(x))

The following defined symbols remain to be analysed:
f

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
f(gen_g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Induction Base:
f(gen_g2_0(+(1, 0)))

Induction Step:
f(gen_g2_0(+(1, +(n4_0, 1)))) →RΩ(1)
g(g(f(gen_g2_0(+(1, n4_0))))) →IH
g(g(*3_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
f(g(x)) → g(g(f(x)))
f(g(x)) → g(g(g(x)))

Types:
f :: g → g
g :: g → g
hole_g1_0 :: g
gen_g2_0 :: Nat → g

Lemmas:
f(gen_g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_g2_0(0) ⇔ hole_g1_0
gen_g2_0(+(x, 1)) ⇔ g(gen_g2_0(x))

No more defined symbols left to analyse.

(10) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

(11) BOUNDS(n^1, INF)

(12) Obligation:

Innermost TRS:
Rules:
f(g(x)) → g(g(f(x)))
f(g(x)) → g(g(g(x)))

Types:
f :: g → g
g :: g → g
hole_g1_0 :: g
gen_g2_0 :: Nat → g

Lemmas:
f(gen_g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_g2_0(0) ⇔ hole_g1_0
gen_g2_0(+(x, 1)) ⇔ g(gen_g2_0(x))

No more defined symbols left to analyse.

(13) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

(14) BOUNDS(n^1, INF)